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ABSTRACT: In this work, an attempt has been made to define a unique relaxation time
spectrum for different types of polymeric materials. Empirical models for the relaxation
spectrum, proposed for linear flexible polymers in the literature, have been used. A
systematic determination of the parameters defining the relaxation time spectrum has
been made from dynamic mechanical data. It has been shown that the resulted expres-
sion for the relaxation modulus could then be used to calculate the stress response of
the materials to various deformations. The strain rate dependence of yield behavior
could also be predicted. q 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 679–684, 1998
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INTRODUCTION
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The stress response of a polymeric material to vari-
where G0 is the unrelaxed modulus, b is equal toous deformations may be predicted by either a lin-
0.5 for most of the polymers, and lc is the relax-ear or nonlinear model of viscoelasticity if an equa-
ation time. Its reciprocal value is almost equal totion of the relaxation modulus G(t) is available.1

the radial frequency for the dielectric loss maximaPolymers are characterized by a spectrum of mul-
at the glass transition.tiple relaxation times due to the various modes of

Although the KWW equation begins to fail atrelaxation a polymer chain can undergo. The lon-
very short times, it successfully describes stage 1,gest relaxation time corresponds to the relaxation
exhibiting a sharp cut off at longer times. Beyondof a whole chain, while the shorter one corresponds
this range is the extended relaxation stage 2, cor-to the relaxation of short parts of the molecules.2

responding to the transition state and obeying aRelaxation phenomena in polymeric materials
power law, as follows:have been widely defined with the aspect of coop-

erativity between segments relaxing simultane-
ously.

G (t ) Å G0

e S t
lc
D0n

(2)The master curve of the relaxation modulus2

of an amorphous polymer involves three stages:
stage 1 for the segmental relaxation, stage 2 for

where e is the base of the natural logarithm, andthe transition zone, and stage 3 attributed to the
n is equal to 0.5. This stage is molecular-weight-entangled molecules.2
dependent and extends further as molecularStage 1 may be satisfactorily described with
weight increases.the Kohlraush–Williams–Watts (KWW) equa-

Around time lc , eqs. (1) and (2) can overlap.tion, as follows3:
The slope of 00.5 is the same as predicted by
Rouse’s theory,4 and the unrelaxed modulus in
Rouse’s theory is the rubber-like elastic modulus.
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exhibiting a plateau zone (the entanglement ef- mula for the relaxation spectrum H may be pro-
posed, based on the interesting observation offect) and a terminal zone due to the flow of the

material. Catsiff and Tobolsky11 that the logarithmic relax-
ation modulus in the transition zone fits the nor-Usually a continuous function H ( ln t ) is more

preferable than a discrete spectrum of relaxation mal distribution curve. The proposed form of the
spectrum is of the typetimes.

Then the relationship between relaxation spec-
trum H and the relaxation modulus G (t ) is as

H (t ) Å h√
p

expS0Sh log
t
lm
D2D (5)follows:

G (t )Å*
/`

0`

H ( ln(l ) )expS0 t
lD d ln l/Ge (3) where lm is the relaxation time of the mean size

strand, and h is a parameter defining the width
of the distribution. Parameter h is equal to 1/
(d2Ú.5) , where d is the standard deviation of thewhere Ge is the relaxed or equilibrium modulus.
probability density function. This function ex-Various theories,4–8 based on molecular dy-
presses the probability of the number of strandsnamics, predicted a unique relaxation time spec-
characterized with a relaxation time between lmtrum. Two of them are the spectrum of Rouse,4

and t . Therefore, the incremental modulus be-as mentioned above, scaling with l00.5 ; and the
tween two successive times is a measure of thespectrum developed by Doi,5 based on the repta-
population of modes with relaxation time betweention theory of de Gennes, which scales as l0.5 .
them.These theories predict the physical meaning of

Once the distribution of relaxation times is de-macroscopically measured material functions and
fined, various linear viscoelastic functions such asthe associated parameters. However, as it is men-
storage and loss moduli can be obtained in termstioned in Baumgaertel et al.,9 there is no quanti-
of the relaxation spectrum H , as follows:tative agreement with experimental data for the

dynamic moduli G * (v ) and G 9 (v ) .
Ferry10 presented several empirical methods of

G * (v ) Å *
/`

0`

H
v2l2

1 / v2l2 d ln l / Ge (6)approximating relaxation time spectrum H from
rheological data.

In Baumgaertel et al.,9 a relaxation time spec- G 9 (v ) Å *
/`

0`

H
vl

1 / v2l2 d ln l (7)
trum obtained with the superposition of two
power laws has been shown to describe the linear
viscoelastic behavior of linear flexible polymers in where v is the frequency in rad/s.
the flow and entanglement region. Moreover, the relationship between the relax-

This spectrum may be written as ation modulus G (t ) and the relaxation spectrum
H ( ln l ) is as follows:

H (l ) Å neg0HS l

lc
D0ng

/ S l

lmax
DneJ for l ° lmax

H (l ) Å 0 for l ú lmax

G (t ) Å Ge / *
/`

0`

H expS0 t
lD d ln l (8)

(4) In this study, dynamic mechanical data for two
different types of materials, namely, low density
polyethylene characterized by linear flexible mol-where g0 is the plateau modulus; lmax is the lon-

gest relaxation time of the material; ne and ng are ecules and an epoxy resin based on an amine-
cured DGEBA, which is an almost highly densethe slopes of the spectrum in the entanglement

and high-frequency glass transition zones, respec- network, have been used to fit the parameters
of the relaxation spectrum functions mentionedtively; and lc is the crossover time to the glass

transition. above. In this way, a unique expression for the
relaxation time spectrum H has been defined em-The first term corresponds to the high-fre-

quency glass transition region, while the second pirically, in terms of dynamic mechanical analy-
sis. This expression has been shown to be a mate-term describes the relaxation in the entanglement

region. rial property, as being able to describe experimen-
tal results obtained at a totally different timeFrom the other hand, another empirical for-
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RELAXATION TIME SPECTRA OF POLYMERS 681

Figure 1 Master curve of storage modulus for linear
polyethylene: Solid line represents the experimental
data of Matsuoka2; (l ) represents eq. (4); (s ) repre-
sents eq. (5).

scale, namely, tensile and compression stress– Figure 2 Master curve of storage modulus for the
strain results of the materials tested. epoxy resin: Solid line represents the experimental

data; (l ) represents eq. (4); (s ) represents eq. (5);
(1 ) represents eq. (10).

MATERIALS AND EXPERIMENTAL
The obtained master curve from the various

isotherms is plotted in Figure 2.
The experimental results for a linear polyethylene Apart of the dynamic mechanical properties,
of high molecular weight are shown in Figure 1, the stress–strain behavior in respect to the defor-
where a master curve at 307C for the tensile stor- mation rate has also been examined. Tensile
age modulus versus frequency in a logarithmic stress–strain tests for linear polyethylene at
scale has been plotted. These data have been three different strain rates, data taken from Mat-
taken from Matsuoka.2 suoka,2 are presented in Figure 3.

A different type of material has also been stud- On the other hand, compression stress–strain
ied in the same analysis. It is an epoxy resin based curves for two different rates of deformation for
on DGEBA and cured with triethylene tetramine
(8% per weight of epoxy), and post-cured at 1207C
for 24 h.

A Dynastat and Dynalizer apparatus was used
for the measurement of the moduli E * and E 9.
This apparatus could apply a sinusoidal load of
maximum amplitude 100N on a cylindrical speci-
men mounted between a long upper rod connected
to a load cell and a short lower rod coupled to a
displacement transducer and connected to a mo-
tor, which was a coil, suspended in the gap of
a permanent pole magnet. By passing a servo-
controlled current through the coil, the specimen
could be subjected to various sinusoidal loads of
prescribed amplitude and frequency. By taking
into account the rigidity of the load cell and the
type and dimensions of the specimen, the storage Figure 3 Tensile stress–strain data for linear poly-
and loss moduli may be calculated. Measurements ethylene at three strain rates: Solid lines represent the
were carried out at frequencies from 0.1 to 100 experimental data of Matsuoka2; points represent the

viscoelastic model combined with eq. (4).Hz and at temperatures of 40–1307C.
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the epoxy resin used, have also been obtained in
Figure 5.

These tests have been carried out at room tem-
perature, with an Instron 1121 type tester, at two
strain rates 6.83 1 1003 and 4.62 1 1004 s01 . The
corresponding curves are presented in terms of
true stress versus true strain, where an isovolume
type of deformation has been assumed.

RESULTS AND DISCUSSION

The relation between stress and strain, at small
deformations, for a viscoelastic material can be Figure 4 Tensile stress–strain data for linear poly-
described by the Boltzmann superposition princi- ethylene at three strain rates: Solid lines represent the
ple, as follows: experimental data of Matsuoka2; points represent the

viscoelastic model combined with eq. (5).

t Å *
t

0`

G (t 0 s )g
h
(s ) ds (9)

ability density function of eq. (5) has also been
used in an analogous procedure.

where t is the stress, G (t ) is the relaxation modu- The results of both treatments are shown in
Figure 1, where a similar approximation to thelus, and g

h
is the rate of deformation.

On the other hand, the nonlinear viscoelastic experimental data has been obtained.
After the function for H has been evaluated,behavior may be described with the use of nonlin-

ear continuum models. eq. (8) has been combined with eq. (9) for the
description of tensile data of Figure 2. ParameterIn all cases, however, it is necessary to define

the modulus with an explicit mathematical func- h was fitted to be equal to 2.
The numerical evaluation of eqs. (8) and (9)tion, such as eqs. (6) or (8).

Therefore, it is necessary to have a discrete re- has been made with the above-mentioned soft-
ware. The results for three different strain rateslaxation spectrum H that can be determined by

fitting a set of parameters to the experimental are shown in Figures 3 and 4.
It must be mentioned here that the relaxationdata. Then, a form of G (t ) can be obtained, re-

sulting in a constitutive equation, able to describe spectrum of eq. (4) deals with the glass transition
and chain disentangling, while the experimentalthe corresponding stress–strain data.

However, the problem is more interesting and data of Figure 1 are referring to the a-process of
semicrystalline polymer, including also part of themore complex if the relaxation spectrum obtained

with this procedure can be treated as a material above Tg (a-relaxation) region of the material.
Therefore, the molecular parameters that arecharacteristic.

For the case of linear polyethylene, the parame- evaluated for the relaxation spectrum consist a
combination of different relaxation regions, as itters associated with the two power laws of eq. (4)

have been evaluated using eq. (6) for G * (v ) in is also defined by the superposition of two terms
in eq. (4).respect to the experimental data for E * (v ) of Fig-

ure 1. The relationship G Å E /2(1 / n ) has also From the other hand, the stress–strain experi-
mental data of Figure 3 are carried out at roombeen taken into account, where the Poisson ratio

n was taken equal to 0.3. temperature, close to the reference temperature
of experimental data of Figure 1. Moreover, inThe fitting of parameters in all cases, as well

as all the calculations, have been made with the Figure 3, what can be termed small strain proper-
ties, i.e., tensile modulus and yield stress, is pre-use of the software ‘‘Mathematica’’.12

The estimated values of these parameters are sented. Large-scale plastic deformation, cold
drawing, and failure are not included. The non-summarized as follows: ne equals 0.1; ng equals

0.01; lc equals 100 s; lmax equals 104 s; and g0 crystalline portion of polyethylene is liquid-like or
rubbery at room temperature. One of the earliestequals 600 MPa.

For the same material, linear polyethylene, the treatments,13 has considered the elastic modulus
of PE to result from deformation of amorphousformula of relaxation spectrum given by the prob-
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Using these parameter values to the constitu-
tive eq. (9), the compression stress–strain data
could be predicted, as shown in Figure 5, for two
different strain rates. A more detailed analysis
for yield behavior, including temperature and rate
effects on yield stress, has been made elsewhere,16

where the dependence of relaxation time on yield
stress has been taken into account. The complete
description of the yield behavior of the epoxy
tested, including the strain hardening, could be
made with the addition of an extra term in eq. (9),
corresponding to the Ge term of eq. (8), related to
the resistance to the plastic flow of the material.
The value of Ge was fitted to be 350 MPa. This

Figure 5 Compression stress–strain data for the ep- parameter denotes the deformation resistance
oxy resin at two different strain rates: Solid lines repre- that the material has to overcome once molecular
sent experimental data; points represent the viscoelas- alignment occurs, altering the configurational en-
tic model combined with eq. (4).

tropy. Instead of this term, a back stress tensor
may be alternatively introduced, related to the
gradient of the entropy change.17‘‘tie molecules’’ obeying inverse Langevin statis-

tics. The correspondence between tensile behavior Under constant rate straining, glassy polymers
show nonlinear viscoelastic behaviors, such asand melt elasticity is consistent with rubber-like

elasticity manifested through entanglements. yielding and cold flow. Various models have been
proposed to explain this behavior, taking into ac-After the initial elastic part of the stress–strain

curve, macroscopic yielding is assumed to be con- count some structural change in the polymeric
structure.18 Recently, experimental results havetrolled by the onset of slip within the lamellar

crystals, provided that the amorphous regions are been reported, verifying the shear induced struc-
tural transition in various polymer glasses.compliant and weak compared to the crystals. At

room temperature, where the a-process is already Agreement in relations between activation en-
thalpy and activation entropy for the steady plas-activated, intracrystalline shear is facilitated by

thermally generated twist or kink defects.14 This tic flow in the post-yield range and the corre-
sponding ones in the molten state of the sameirreversible shear of the crystallites has been

demonstrated by Young et al.15 by X-ray studies. polymer constitute direct evidence for the transi-
tion of the glass structure into liquid one in theDue to the above-mentioned mechanisms, pa-

rameters associated with the spectrum of eq. (4), post-yield range. Therefore, a change in the relax-
ation mechanism in the largely deformed glassrepresenting the viscoelastic behavior of linear

polymers in the flow and entanglement regime, has been verified, leading to a satisfactory de-
scription of the stress–strain data of Figure 5,can be used for the description of yield behavior

of PE at small deformations. with molecular parameters referring to eq. (4)
and associated with glass transition and entan-Besides, concerning the relaxation spectrum of

eq. (5), it has been defined for the transition zone, glement regime.
On the other hand, the normal distributionor stage 2 of relaxation,2 associated with the ex-

ternal viscosity, which resists the tendency of function of relaxation times, defined by eq. (5),
was not possible to describe the stress–strain be-chains to slip past their neighbors. As it is ob-

served from Figure 4, the same parameters, eval- havior of the epoxy with the same parameter val-
ues used for the fitting of the storage modulus ofuated from fitting the experimental data of Figure

1 with eq. (5), were able to predict the stress– Figure 2.
Considering that epoxy is mainly characterizedstrain curve of PE.

Following the same procedure for the epoxy by a chemical network with rather short molecu-
lar chains with decreased flexibility, it has beenresin, it has been found that the two power laws

relaxation spectrum of eq. (4) can be fitted well assumed that the term of eq. (4) related to the
entanglements should be omitted. By taking intoto the experimental data of Figure 2 with the asso-

ciated parameters taking the values: ne equals ng account only the first term of eq. (4), the master
curve of Figure 2 was fitted satisfactorily in theequals 0.4, lc equals 100 s, lmax equals 104 s, and

g0 equals 1200 MPa. transition region. The parameter values were ng
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periments in terms of a generalized Maxwell
model. The parameters associated with spectrum
H were defined as those that best approximate
the entire range of experimental results.

The same procedure has been followed for the
following two types of materials: a high molecular
weight linear polyethylene, and a crosslinked ep-
oxy resin.

The relaxation spectrum could then be treated
as a material characteristic, leading to the de-
scription of the stress–strain behavior of these
materials with the same set of parameters, in
terms of a viscoelastic constitutive equation.

It has been found that for both types of materi-
als, the relaxation spectrum H based on the super-
position of two power laws expresses an explicit

Figure 6 Compression stress–strain data for the ep-
function for the relaxation modulus G (t ) .oxy resin at two different strain rates: Solid lines repre-

Concerning the epoxy resin, a power law analo-sent experimental data; points represent the viscoelas-
gous to that of Rouse’s theory for H , but with atic model combined with eq. (10).
different exponent value, leads to a satisfactory
prediction of the relaxation modulus and, conse-
quently, the yield behavior of the material.equals 0.1 and lc equals 100 s. The relaxation

spectrum H then takes the form
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